博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
关于tensorflow中维度的问题
阅读量:4947 次
发布时间:2019-06-11

本文共 878 字,大约阅读时间需要 2 分钟。

一直对TF中tensor的reduce操作涉及的axis(reduction_indices)计算一知半解,这里系统总结一下,避免继续走弯路:

1.本质上来说,reduce_xxx都是降维操作,沿某个axis进行降维,不管是求和还是取平均值,总之需要消灭这一维度。

2.默认axis值为none,也即是降为0维,变为一个数值了

3.假定Tensor T的维度dim = k,那么axis = k-1代表基于最里面的维度进行计算,axis = 0 代表基于最外层的维度进行计算

 

给出一个2*3*4的tensor。

[[[ 1 2 3 4]

[ 5 6 7 8]

[ 9 10 11 12]]

[[13 14 15 16]

[17 18 19 20]

[21 22 23 24]]]

如果计算tf.reduce_sum(tensor, axis=0),axis=0说明是按第一个维度(最外层的2)进行求和,也就是说把

[[ 1 2 3 4]

[ 5 6 7 8]

[ 9 10 11 12]

[[13 14 15 16]

[17 18 19 20]

[21 22 23 24]]相加,所以第一个维度(也就是2)抹去,求和结束得到的tensor是3*4(之前tensor是2*3*4),即:

[[1+13 2+14 3+15 4+16]

[5+17 6+18 7+19 8+20]

[9+21 10+22 11+23 12+24]]。

依次类推,如果axis=1,那么求和结果shape是2*4,即:

[[ 1 + 5 + 9 2 + 6+10 3 + 7+11 4 + 8+12]

[13+17+21 14+18+22 15+19+23 16+20+24]]

如果axis=2,那么求和结果shape是2*3,即:

[[1+2+3+4 5+6+7+8 9+10+11+12]

[13+14+15+16 17+18+19+20 21+22+23+24]]

 

转载于:https://www.cnblogs.com/punkcure/p/8418597.html

你可能感兴趣的文章
win7任务栏还原为xp样式
查看>>
nfs+drbd+keepalived 高可用的实现
查看>>
HttpClient
查看>>
【实践】配置服务器网络环境思路
查看>>
数组重排
查看>>
javaweb学习总结(三十八)——事务
查看>>
CRF 及CRF++ 安装与解释
查看>>
winform windowsmediaplayer的属性
查看>>
JS获取当前页面的URL信息
查看>>
条件、循环和其他语句
查看>>
记录时刻,博客原创破200大关
查看>>
.NET 4 并行(多核)编程系列之一入门介绍
查看>>
C#开发微信公众平台-就这么简单(附Demo)
查看>>
自动注册 IIS6 的 MIME 类型
查看>>
用三张图片详解Asp.Net 全生命周期
查看>>
mapreduce处理气象数据-shell脚本处理气象数据
查看>>
java关键字之this关键
查看>>
十天冲刺计划
查看>>
mongoDB1--什么是mongoDB
查看>>
【转】Linux学习之路--启动VNC服务
查看>>